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Abstract

Nanotechnology has emerged as a significant method for improving oil recovery, primarily by altering reservoir rock surface wettability. 
Integrating nanomaterials with electromagnetic (EM) waves has demonstrated a potential effect in modifying reservoir rock-wetting conditions. 
Consequently, additional crude oil was noticed to be recovered. EM waves significantly enhance the adsorption process through dipole interactions 
and polarization effects, thereby improving the effectiveness of surface modification. Recent research indicated that employing nanomaterials with 
a hybrid of magnetic and dielectric attributes enhances the ions' redistributions, making the fluids highly electrified when exposed to EM waves, and 
surface wettability can easily be altered effectively. This study reviews recent advancements in wettability modification using nanomaterials under 
EM wave exposure. Challenges and future research opportunities were also highlighted.
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Introduction

Enhanced Oil Recovery (EOR) techniques seek to optimize the 
extraction of remaining oil from reservoirs following primary and 
secondary recovery phases.1,2 The rapid growth in the demand for 
energy utilization globally is unprecedented.1,3-6 Crude oil extraction 
is one of the significant sources of energy derivation; therefore, 
substantial reform in oil extraction is urgently needed.7 Wettability 
alteration is a crucial approach in enhanced oil recovery, affecting 
the interactions among oil, water, and rock surfaces.8,9 Wettability 
refers to the disposition of a fluid to spread across a solid surface 
when another immiscible fluid is present.10 The reservoir rock is 
typically observed to be in an oil-wet condition, presenting specific 
challenges for effectively transporting fluids. Restoring the reservoir 
rock from oil-wet to water-wet conditions will significantly enhance 
the release of trapped oil within the rock pores.11 Recent studies 
have shown that EM waves, when exposed to nanoparticles during 

wettability analysis, can drastically reduce interfacial tension, and 
surface wettability which in turn enhances oil mobility.10,12-15

Forming hybrid nanomaterials is an effective method to improve 
the nanomaterials' thermal, magnetic, chemical, and electrical 
properties.16,17 It has been reported that the nanoparticles with 
dielectric or magnetic attributes are the most suitable candidates 
for enhancing the fluids' conductivity and magnetic behavior 
under EM wave endorsement, making the fluids more electrified. 
Hence, the moving charges of the particles can be operated by the 
energy released from EM waves at the fluid/rock surface interface, 
resulting in a subsequent drop in wettability.18 

Literature Review

The unique properties of different nanomaterials concerning 
electrical conductivity influenced by EM waves make them 
exceptional candidates for surface modification to attain EOR. The 
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wettability alteration in this regard is attributed to the increasing 
movement of the polarized moving ions upon EM wave endorsement. 
The nanoparticles with dielectric or magnetic attributes are the 
determinant factor considering their effective reaction under the 
influence of EM waves. Furthermore, Recent experiments verified 
that preparing hybrid fluids incorporating magnetic and dielectric 

nanoparticles makes particles polarized more significantly and 
enhances the moving ions, which helps to modify the solid substrate 
subsurface from oil-wet to water-wet.10,12 Table 1 summarizes some 
experimental results for the effect of different nanoparticles on 
wettability change endorsed by EM waves.

 
Table 1: An overview of nanomaterial's effect on surface wettability change subjected to EM waves exposure

Nanoparticles (NPs)  Base-fluids
Contact angle (degree)

References
NPs without an EM wave NPs with EM wave

Fe2O3 brine 98 96 [10]

ZnO brine 139 121 [10]

ZnOFe2O3-SiO2 brine 124 73 [10]

ZnO brine 54 50 [19]

ZnO-SiO2 brine 132 58 [12]

ZnO brine 132 121 [12]

Mechanism of Wettability Change Using Nanomaterials-
Assisted EM Waves

The primary mechanisms of the change provided involve 
nanoparticle adsorption and surface energy modification upon 
EM wave propagation during wettability experiments. Interfacial 
energy alteration and charge redistribution also played a significant 
role. Nanoparticles like graphene oxide (GO), silicon oxide (SiO₂), 
and metal oxides (like ZnO, Fe₃O₄) modify wettability by influencing 
the solid-liquid interfacial energy.19-21 The EM waves significantly 
enhance the adsorption process through dipole interactions and 
polarization effects, thereby improving the effectiveness of surface 
modification.8,11 Dielectric or semi-conducting nanomaterials 
create electric dipoles in an EM field, which modifies solid surface 
free energy, affecting wettability change resulting in hydrophilicity 
or hydrophobicity in the system. EM waves induce a redistribution 
of surface charges on nanoparticles, resulting in alterations in 
zeta potential and surface electrostatic forces, which may result 
in the separation of oil from rock surfaces, facilitating changes in 
wettability.

Challenges and Limitations

Notwithstanding the available encouraging outcomes 
concerning nanomaterials employment for surface wettability 
change activated by EM waves, numerous difficulties persist: 

•	 EM wave penetration: Efficient transmission of EM waves 
and exert frequency required

•	 Nanoparticle stability: Guaranteeing the prolonged 
stability and dispersion of nanoparticles in reservoirs.

•	 Cost-effectiveness: Expanding the technology for 
industrial use while ensuring economic viability. 

•	 Environmental hazard: Possible ecological ramifications 
of nanoparticles in oil fields. 

Potential Research Opportunities

•	 Formulating hybrid nanoparticles with enhanced 
dielectric characteristics for superior electromagnetic 
absorption. 

•	 Investigating low-frequency EM waves for deep reservoir 
applications.

•	 Improving surface modification approaches  of 
nanoparticles to optimize alterations in wettability. 

•	 Utilizing machine learning models to enhance 
nanoparticle-EM interactions in enhanced oil recovery 
procedures.

Conclusion

The nanotechnology influenced by EM waves for enhanced 
oil recovery offers an attractive approach for enhancing reservoir 
wettability. Recent findings show that nanoparticles, especially 
dielectric and magnetic nanomaterials, can notably change 
wettability when subjected to EM waves, leading to enhanced oil 
displacement. Future advancements in material science and EM 
wave optimization will significantly improve this technology's 
feasibility and industrial applicability.
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