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Abstract

Abnormal equivalent circulation density (ECD) often leads to a series of adverse effects on drilling operations, such as wellbore stability, blowout 
and well collapse, especially in narrow windows. Accurate ECD is crucial for improving the safety, efficiency of drilling operations. The existing ECD 
calculation processes do not fully consider parameters, such as mud pit gain, total hydrocarbon content, etc. When gas enters the annulus from the 
formation, the density of the drilling fluid in the annulus will decrease, causing the bottom hole pressure to decrease. In this paper, we presented a 
machine learning method to predict ECD. Specifically, a data set of 5421 drilling parameters from surface sensors were collected to predicted ECD 
by utilizing a Random Forest. Eleven parameters, such as well depth, rate of penetration (ROP), mud density, pump rate, mud pit gain, etc. are taken 
as input parameters, and actual measured ECD is taken as output parameters in the work. In order to evaluate the developed models, the result of 
novel model was compared with the real ECD that from pressure while drilling tools (PWD). The resulted showed that the RF model predicted the 
ECD with R2 of 0.9939 and RMSE of 0.001 in the training; while R2 and MSE were 0.9859 and 0.0017 in the testing datasets. The model was capable 
of ensuring bottom-hole pressure is within a safe range, avoid dangerous accidents, and minimize the non-productive time (NPT).
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Introduction

Equivalent circulating density (ECD) is considered a crucial 
parameter in the realm of drilling and well control. It is the effective 
density of a circulating mud fluid in wellbore and concludes two 
parts: mud hydrostatic pressure and annulus pressure loss in 
annular. Inaccurate ECD may result in bottom-hole pressure 
imbalance and complex well control problem, such as stuck pipe, 
collapse, lost circulation, gas kick and blowout, etc.1-2 Especially, 
if ECD is higher than formation pore pressure, the mud will enter 
the formation and lost circulation will occur; when ECD is lower 
than the formation pore pressure, gas kick will occur. Therefore, 
understanding and accurate prediction bottom hole ECD is key to 
managing the formation pressure and achieving optimal drilling.

There are several factors that have an effect on the ECD during 
the drilling operations, including mud pump rate, mud density, 
drill pipe rotation, standpipe pressure, concentration of cuttings, 
downhole temperature and pressure.3-5

There are two common methods that can be used to predict ECD 
in the literature. The first is to use PWD and measurement while 
drilling (MWD) for real-time monitoring of bottom-hole pressure 
during drilling.6 The equipment has a high-precision quartz gauge, 
which can measure accurate ECD, annular pressure, and internal 
pressure measurement. It is the most accurate method, which is 
particular useful in complex well conditions and high-risk areas. 
The method was almost perfect, but the cost is high, and it cannot 
predict the undrilled section.
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The second method for calculating ECD is mathematical model. 
It is calculated as:

 (1)

Where:

ECD is Equivalent circulating density, g/cm3

Pm means the hydrostatic pressure of a column of fluid, MPa

△Pa is annulus friction pressure loss, MPa

Pwbh represents wellhead back pressure, MPa

DTVD means total vertical depth, m

g is the acceleration due to gravity, m/s2

It can be seen that only the annular friction pressure loss is 
unknown, and other parameters are known. Therefore, accurate 

calculation of the annular space becomes very important. The 
value of annular pressure loss is related to pump flow rate, drilling 
fluid properties, annular size, wellbore trajectory, gas intrusion 
and other parameters. To accurately calculate annular pressure 
loss, certain assumptions must be made, such as assuming that 
the borehole was regular, concentric annular and circular sections. 
Based on this, hydraulic software was developed to calculate the 
bottom hole ECD and make advance predictions for the undrilled 
well sections. Several rheological models, such as Bingham plastic, 
power law, Herschel-Bulkley, etc were used to predict ECD and 
standpipe pressure.7,8 However, it had been found that every 
rheological model needs different input parameters, and there also 
was a discrepancy between predicted ECD and measured by PWD.

Nowadays, an alternative approach for predicting the bottom-
hole ECD with high accuracy is by using AI and machine learning 
method. These methods can process and analyze large amounts of 
complex drilling data, identify patterns that are difficult to discover 
using traditional methods, and use them for prediction and 
decision-making, thereby improving the accuracy of predictions.9

Table 1: ECD prediction in literature

References Data Model Input parameters Error

Ahmadi14 664 LSSVM, ANFIS, 
PSO-ANFIS Pressure, temperature, input density

 
R2: 0.999, 0.850, 0.932 
MSE: 1.45e-4, 35, 0.01
 

Elzenary15 3000 ANN, ANFIS Rate of penetration, Mud weight,  
Drill pipe pressure

R: 0.9982, 0.9982 
AAPE: 0.2237, 
0.2262

Han16 660 ARIMA+BPNN / RMSE: 0.0011

Alkinani17 2000 well ANN Flow rate, mud weight, plastic viscosity, yield point,TFA, RPM, 
WOB

R2: 0.982 
MAD: 0.0008

Abdelgawad18 2376 ANFIS, ANN Mud weight, ROP, standpipe pressure R2: 0.9982 
AAPE: 0.22

Rahmati19 884 RBF Pressure, temperature, input density, type of mud R2: 0.99 
AAPE:1.66e-6

Alsaihati20 3567 SVM, RF
functional network

Flow rate, ROP, standpipe pressure, hook load, WOB, torque, 
drill stringspeed

R2: 0.95~0.99
RMSE: 0.23~0.42

Gamal11 4700 ANNs, ANFISs Pumping rate, drillstring speed, stand-pipe pressure, ROP, 
torque, WOB, GPM, drilling torque

R: 0.98, 0.96 
AAPE: 0.3%, 0.7%

Kandil21 4663
passive aggressive
regressor, KNN,
ANN

Inclination angle, true vertical depth, annular temperature, 
mud flow rate, mud weight, plastic Viscosity, yield point, gel
strength,total flow area, annular pressure, standpipe 
pressure, total downhole revolutions per minute, rate of 
penetration

R2: 0.251, 0.996
0.999

Abdelaal12 5140 RF MW, SPP, GPM R: 0.99 
MSE: 0.04

Al-Rubaii13 4371
ANN 
SVM 
DT

SPP, ROP, mud weight, GPM, plastic viscosity, yield point, LSYP

 
R2: 0.9947 
AAPE: 0.23%
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Ma considered the effect of temperature, drill pipe eccentric, 
drill pipe rotation and cutting bed though research horizontal 
well drilling on borehole pressure and ECD. It was found that drill 
fluid density, viscosity, and pump rate were the main influencing 
parameters.10 Gamal carried out the prediction of ECD by using 
artificial neural networks (ANNs) and adaptive network-based fuzzy 
inference systems. The drilling data of 3570 and 1130 were used to 
build, tested and validated the model. The resulted showed that two 
models had the strong prediction capability for ECD.11 Abdelaal12 
also developed a approach to predict equivalent circulation 
density, which based on drilling data while drilling. Nevertheless, 
initial mud weight, mud pumping standpipe pressure, pumping 
rate are considered, the mud pool gain and total hydrocarbon 
content are ignored in his work. Al-Rubaii13 focused on develop a 
novel method name as ECDeffc.m to predict ECD by utilizing three 
artificial intelligence techniques such ANN, SVM, DT. The data for 
ECD is 4371, and mud pump flow rate (GPM), mud weight (MW), 
plastic viscosity (PV), low shear yield point (LSYP), yield point (YP), 
standpipe pressure (SPP), rate of penetration (ROP) were selected 
as input. It has a correlation co-efficient of 0.9947 and an average 
absolute percentage error of 0.23%. Table 1 show several research 
that utilized artificial intelligence as prediction tools to predict ECD.

It is clear from the table that most machine learning methods 
can obtain a higher accuracy, however, the models are different in 
terms of the input parameters, the data used for the ECD prediction. 
In addition, the annular pressure, temperature in the literature are 
regarded as the input, however, obtaining these parameters requires 
installing downhole sensors and it will increase operational costs. 
We also found that there was little research on ECD prediction 
when gas enters the annulus, such as total hydrocarbon content 
increases and mud pool gain changes. Ignoring these parameters in 
this work would increase the error while predicting ECD, and cause 
well control problems.

The novel approach in this study is that the AI and machine 
learning method are mainly dependent only on the real drilling 
parameters that are well depth, vertical depth, rate of penetration, 
weight on bit, top_drive_torque, pump pressure, mud pumping 
rate, mud density, mud pit gain, total hydrocarbons. To this end, 
several real data points, collected from surface sensors and well-
bore PWD, were analyzed, filtered, and processed to build models 
for predicting the ECD. The results of these models were compared 
against each other, as well as real ECD measured by PWD to verify 
the accuracy of the model.

Data and Methods

Data description

The data obtained for the current study was collected from 
a 8-1/2in. horizontal section and the well depth is 3700.00m. 
A total of 5206 data points of surface drilling parameters and 
ECD measured by PWD were obtained. The following drilling 
parameters monitored by surface sensor were used as the input 
variables for the modelling: depth (D), vertical_depth (VD), bit 
position (BP), rate of penetration (ROP), weight on bit (WOB), 
top_drive_torque (TDT), pump pressure (PP), mud pumping rate 
(MPR), mud density (MD), mud overflow (MO), total hydrocarbons 
(TH), and ECD. The bottom-hole ECD measured by the PWD is the 
target value for fitting the machine learning model. Table 2 shows 
the statistical parameters of the whole datasets. D ranges from 
3568.00 to 3684.77m; VD ranges from 3304.26 to 3397.96m; BP 
ranges from 3504.65 to 3684.77m/h; ROP ranges from 29.68 to 
75.42m/h; WOB ranges from 10.11 to 108.34kN; TDT ranges from 
9.17 to 17.21kNm; PP ranges from 15.44 to 24.30MPa; MPR ranges 
from 26.77 to 34.91L/min; MD ranges from 1.65 to 1.70g/cm3; MO 
ranges from -0.01 to 2.29m3; TH ranges from 0.07% to 58.34%; ECD 
ranges from 1.79 to 1.84g/cm3.
 

Table 2: Statistical parameters of the whole dataset (5206 data points)

Content Max Min Mean Std Skew Kurtosis

Depth 3684.77 3568 3612.1 37.4 0.39 -1.11

vertical_depth 3397.96 3304.26 3339.57 29.99 0.39 -1.1

bit_position 3684.77 3504.65 3603.73 48.27 -0.29 -0.67

ROP 75.42 29.68 62.25 11.27 -0.59 -0.84

WOB 108.34 10.11 70 21.41 -0.69 -0.11

top_drive_torque 17.21 9.17 12.67 1.81 0.36 -0.7

pump_pressure 24.3 15.44 22.26 1.29 -1.14 2.14

Mud pumping rate 34.91 26.77 31.49 2.14 -0.29 -0.07

mud_density 1.7 1.65 1.67 0.01 -0.04 -0.42

mud_overflow 2.29 -0.11 1.22 0.45 -0.39 0.19

total_hydrocarbons 58.34 0.07 14.42 11.29 1.25 1.97

ECD 1.84 1.79 1.82 0.01 -0.32 -1.16
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Figure 1 shows the heat map of the data distribution. The high 
values are in red, and low values show in yellow. It can be seen 
that flow rate, rate of penetration, and mud overflow on bit have a 
strong positive relationship with the bottom ECD, that is, 0.51, 0.22, 
and 0.08, respectively.

Date splitting

It is necessary to develop a machine learning model that 
make a precision predictions for measured datasets. The training 
data is used to build the model, adjust the relationship between 
input and output data by the algorithm, and also select, tune 
the model’s hyperparameters (such as learning rate, number of 
trees, regularization strength, etc.). The testing data is used to 
check whether the model is overfitting, evaluate the performance 
of the trained model, and check whether the model has good 
generalization ability by using evaluation indicators, such as mean 
square error, accuracy, F1 score, etc.

In this analysis, eleven surface drilling parameters were used 
as input variables: D, VD, BP, ROP, WOB, TDT, PP, MPR, MD, MO, 
TH, while ECD was regarded as a dependent parameter (output). 
In addition, the datasets has been divided into two parts: training 
and testing sets. And it was randomly split with a ratio of 75:25. 
Specifically, the training data has 3905 data points and the test data 
contains 1301 data points. Table 3 and Table 4 present the statistical 
parameters of the training and testing datasets, respectively.

To ensure that the datasets (input and target variable) can more 
accurately reflect the real situation and improve the performance 
and reliability of the model, the datasets were cleaned by the 
filter method to avoid missing values, outliers or duplicate values. 

Median filtering, average filtering, and Kalman filtering are the 
general filtering methods. The first method is to replace the current 
data point by middle value within the window ranges, which is 
suitable for removing sharp impulse noise. It is good at removing 
the impulse noise, but the effect on stationary noise is average, and 
the computational complexity is relatively high. The average filter 
is a simple and common signal smoothing method, suitable for 
dealing with stable datasets. As for sudden signal, it easily makes 
the smoothing of signal edges. The last is a recursive algorithm 
based on linear minimum mean square error estimation, which 
is suitable for dynamic systems and time series data, and can be 
adjusted dynamically.

The data collected in this paper comes from the well depth of 
3568.00~3697.44m, and the signal is relative stable, so average 
filtering method is used in this work for signal processing. It is 
shown in follows:

	 (2)

Where xi the original value of the parameter, yi means the filtered 
data, N represents the window size, and k is the half of the window.

Data standardization

Data standardization is an important step in machine learning, 
which refers to processing data to make it conform to a certain 
standard or distribution. The purpose of standardization is to 
ensure that each feature is calculated on the same scale to avoid 
some features having too much impact on the model due to their 
large values. The values of input variables were standardized using 

 
					     Figure 1:  Heat map of the all datasets
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the following formula:

(3)

Where X is the original input parameter need to be normalized; 
Xmin is the minimum input value and y is the maximum input value.

Table 3: Statistical variables of the training datasets (3905 data points)

Content Min Max Mean Standard Deviation Skewness Kurtosis

Depth 3568 3684.6 3612.8 37.44 0.36 -1.12

vertical_depth 3304.3 3397.9 3340.1 30.02 0.36 -1.11

bit_position 3504.7 3684.7 3604.7 48.08 -0.31 -0.65

ROP 29.68 75.42 62.4 11.23 -0.61 -0.78

WOB 7.19 108.34 70 21.48 -0.7 -0.08

top_drive_torque 9.17 17.2 12.69 1.79 0.36 -0.69

pump_pressure 15.44 24.3 22.27 1.29 -1.21 2.46

Mud pumping rate 26.77 34.91 31.47 2.13 -0.29 -0.06

mud_density 1.65 1.7 1.67 0.01 -0.07 -0.38

mud_overflow -0.11 2.29 1.22 0.45 -0.39 0.21

total_hydrocarbons 0.07 58.34 14.42 11.26 1.26 2.02

ECD 1.79 1.84 1.82 0.01 -0.3 -1.18

Table 4: Statistical variables of the testing datasets (1301 data points)

Content Min Max Mean Standard Deviation Skewness Kurtosis

Depth 3568 3684.8 3609.9 37.26 0.47 -1.05

vertical_depth 3304.3 3398 3337.8 29.87 0.48 -1.05

bit_position 3504.7 3684.8 3600.5 48.92 -0.24 -0.72

ROP 29.68 75.42 61.78 11.4 -0.52 -1.01

WOB 7.53 108.34 69.95 21.22 -0.65 -0.2

top_drive_torque 9.25 17.21 12.61 1.88 0.38 -0.74

pump_pressure 16.85 24.3 22.2 1.3 -1.06 1.76

Mud pumping rate 26.77 34.91 31.53 2.16 -0.28 -0.12

mud_density 1.65 1.7 1.67 0.01 0.07 -0.52

mud_overflow -0.11 2.28 1.2 0.46 -0.4 0.14

total_hydrocarbons 0.07 58.33 14.39 11.38 1.23 1.83

ECD 1.79 1.84 1.82 0.01 -0.39 -1.08

Random forest model

Random forest is a general machine learning method, proposed 
by Leo Breiman and Adele Cutler in 2001, that uses the output of 
multiple decision trees to make decisions on each tree, and finally 
get a prediction result by voting or averaging.22 It has high accuracy 
and robustness, and can effectively prevent overfitting problems. 
Python library’s Scikit-Learn was used to build the random forest 
model. The steps of the random forest algorithm are as follows:

A. Data preparation

Prepare a dataset for training and testing in advance. The 
dataset usually includes a feature matrix X and a target variable Y.

B. Create multiple sub-samples

It will extract multiple sub-samples from the training data set 
with replacement during the training process. Each sub-sample is 
used to train a decision tree.

C. Construct a decision tree

It is necessary to construct a decision tree for each sub-dataset. 
The process include the randomly select features, selection of the 
best split point, and construction of decision tree.

D. Prediction of aggregated decision trees

The input test data is passed to each decision tree to obtain the 
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prediction results of each tree. The average of all tree prediction 
values is taken as the final prediction result for regression process. 
Figure 2 shows the flow chart of Random Forest model.

E. Model evaluation

It is important to use appropriate evaluation indicators (such 
as mean square error, accuracy, F1 score, etc.) to evaluate the 
performance of the random forest model. The relative mean square 
error and coefficient of determination were used to evaluate the 
accuracy of the models in the work.

						      (4)

						      (5)

 Where N means the number of datasets tested, yactual is the 
actual ECD measured by PWD, ypredicted is the corresponding to 
predicted ECD, ymeanactual means the average of measured ECD.

The parameters used to improve the performance of the random 
forest model, including

1)	 The number of trees in the random forest “n_estimators”, 
the more trees, the better the model performance will 
generally be, while the computational cost will also 
increase.

2)	 The maximum depth of each tree “max_depth”, which can 
limit the depth of the tree and prevent overfitting. 

3)	 The minimum number of samples required for internal 
node splits “min_samples_split”, larger values contribute 
to preventing the creation of too small subtrees, thus 
reducing the risk of overfitting. 

4)	 The minimum number of samples required for leaf nodes 
“min_samples_leaf”.

5)	 The number of features to consider when finding the best 
split “max_features”. 

6)	 Whether to use bootstrap sampling “bootstrap”. Different 
values of n_estimators from 100 to 400, four types of max_
depth (i.e., None, 10, 20, 30), three types of min_samples_
split (i.e., 2, 5, 10), three types of min_samples_leaf (i.e., 
1, 2, 4), three types of max_features (i.e., auto, sqrt, log2), 
and two types of bootstrap (i.e., True, False) were tuned 
using GridSearchCV. Python code was used to build the RF 
model.

Results and Discussion

This section will discuss the bottom hole ECD results predicted 
by RF models in this work.

It is necessary to find the best hyperparameter combination 
for improving the accuracy of random forest model prediction. The 
RF model performance with different parameters (n_estimators, 
max_depth, min_samples_split, min_samples_leaf, max_features, 
and bootstrap) were tuned using GridSearchCV method. 

	  
				    Figure 2: Flow chart of Random Forest model
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Figure 3 shows that the cross-plot of the actual and predicted 
ECD of the training and testing datasets for the Random Forest 
model. The RF predicted the ECD with an 0.9939 and the lowest 
root-mean-square error (RMSE) of 0.001 in the training datasets, 
while the R2 and RMSE were 0.9859 and 0.0017, respectively, in the 
testing datasets. The optimum model parameters of RF model are 
shown in Table 5. The optimum, including the n_estimators, max_
depth, min_samples_split, min_samples_leaf, max_features, and 
bootstrap are 400, 20, 2, 1, sqrt, and False, respectively.

Table 5: Coefficients of key parameters for the random forest

Number Parameters Coefficients Optimum

1 n_estimators 100, 200, 300, 400,500 400

2 max_depth None, 10, 20, 30 20

3 m i n _ s a m p l e s _
split 2, 5, 10 2

4 min_samples_leaf 1, 2, 4 1

5 max_features 'auto', 'sqrt', 'log2' 'sqrt'

6 bootstrap True, False FALSE

						      (a) Testing datasets
 				  

						      (b) Testing datasets
	 Figure 3: Cross-plot of the actual and predicted ECD with Random Forest model (a) training set and (b) testing set
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Conclusion

An Random forest model was developed using Python to predict 
the ECD based on 5206 data points obtained from surface sensors 
and PWD during drilling operations. The ECD predicted by random 
forest was compared with the measured ECD of pwd. Based on the 
results, the following can be concluded:

•	 Total 5206 data points, including 11 input variables of 
depth, vertical_depth, bit position, rate of penetration, etc., 
were collected to predict bottom hole ECD

•	 The optimal parameters were obtained by the random 
forest model grid search method, such as the n_estimators 
of 400, max_depth of 20, min_samples_split of 2, min_
samples_leaf of 1, max_features of sqrt, and bootstrap of 
False, respectively

•	 The random forest predict the ECD with R2 of 0.9939 and 
MSE of 0.001 in the training datasets, while R2 and MSE 
were 0.9859 and 0.0017 in the testing datasets,respectively

•	 In this paper, this model can only calculate the bottom hole 
ECD under fixed parameters. In practical applications, it is 
necessary to extend the real-time accurate estimation of 
the ECD in the future
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