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Abstract

The possible ameliorative roles of the dipeptide carnosine with respect to Covid-19 viral infection and associated pathologies are discussed. In 
particular carnosine’s ability to suppress age-related changes in carbohydrate metabolism which normally exacerbate Covid-19-induced dysfunc-
tion as well as the dipeptide’s anti-inflammatory activity is considered. As carnosine is normally present in the olfactory lobe and that anosmia (loss 
of sense of smell) is a common feature of Covid-19’s effect on humans, the possibility that nasal administration of carnosine could be therapeutic is 
considered as a means of raising levels of the dipeptide in the olfactory lobe and thereby alleviates virus-mediated neuropathology.

Keywords: Carnosine, Glycolysis, Glycation, Diabetes, Senescence, Reprogramming, Brain

 1

Carbohydrate Metabolism, Covid-19 and Aging

There is substantial evidence which indicates a close associa-
tion between Covid-19, type-2 diabetes and much age-associated 
dysfunction mediated by enhanced carbohydrate catabolism i.e. 
glycolysis. It appears that either (i) elevated glucose metabolism 
enhances viral infection and replication,1-3 or (ii) Covid-19 exerts 
a causal role towards diabetes and related phenomena.4 The close 
association between diabetes and Covid-19 is further illustrated 
by the finding that enhanced non-enzymic protein glycosylation 
(glycation) accompanies both phenomena.5-7 Much non-enzymic 
protein glycation is mediated by the glycolytic intermediates, the 
triose-phosphates dihydroxyacetone phosphate and glyceralde-
hyde-3-phosphate and their highly reactive decomposition prod-
uct, methylglyoxal (MG). Indeed, MG is regarded as responsible for 
much post-synthetic protein, lipid and nucleic acid glycation which 
accompanies age-related dysfunction.8

Studies show that Covid-19 virus infection induces an up reg-
ulation in glycolytic flux, presumably in order to produce the nec-
essary nucleic acid and protein precursors (nucleotides and amino 

acids) for viral replication.9 It is also relevant to note that enhanced 
carbohydrate catabolism is frequently found to accelerate the on-
set of much age-related dysfunction, whereas partial suppression 
of glycolysis delays aging onset.10 Aging is a risk factor for Covid-19 
induced mortality;11 not only does patient age constitute a risk fac-
tor for virus-induced mortality, but this is also reflected at the cel-
lular level; a recent study showed that clearance of senescent cells 
decreased the severity of Covid-19 associated pathology.12 The nat-
urally-occurring dipeptide carnosine (beta-alanyl-L-histidine) was 
recently shown to facilitate the phagocytic elimination of senescent 
cells13 in a model system, and clearance of senescent cells, as noted 
above, can decrease the severity of Covid-19 –associated patholo-
gy.12  

Other Properties of Carnosine Which May Help to Sup-
press Covid-19 Pathology  

A particular feature of Covid-19 is a phenomenon called a cy-
tokine storm, which is a pro-inflammatory condition mediated 
systemically by leukocytes of the immune system14 and/or mac-
rophages,1 following infection.15 Macrophages exist in two forms, 
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M1 and M2. The M1phenotype is the pro-inflammatory state which 
releases pro-inflammatory cytokines, whereas the M2 phenotype 
releases anti-inflammatory agents. Furthermore, the M1 and M2 
phenotypes differ in terms of their energy metabolism, while the 
M1 macrophage is highly glycolytic, the M2 form is more aerobic. 
Macrophage metabolic reprogramming is a recognised feature of 
control of inflammation.6

Carnosine has been shown to reprogram macrophage ener-
gy metabolism from their pro-inflammatory M1 state into the 
anti-inflammatory M2 state,16 thereby suppressing secretion of 
pro-inflammatory cytokines IL-1beta and IL-6, and upregulating 
expression of the anti-inflammatory cytokine TGF-beta-1 and the 
protective factor NRF-2. These changes are most probably mediat-
ed via changes in mRNA translation, by the dipeptide suppressing of 
cap-dependent mRNA translation, and enhancing cap-independent 
mRNA translation.17 interestingly, cap-independent mRNA transla-
tion has been reported to be up regulated in long-lived mice18 which 
results in enhanced mitochondrial biogenesis, including the mito-
chondrial Lon-1 peptidase and the protective peptide humanin.19

It is interesting to note that the Covid-19 virus (SARS-CoV-2) 
also uses glutamine as a metabolic source of macromolecule pre-
cursors, in addition to glucose.20 Importantly, carnosine can inhibit 
glutamine metabolism, at least in human glioma cells, by accelerat-
ing the proteolysis of glutamine synthetase,21 which could further 
decrease the synthesis of macromolecular precursors (amino acids 
and purine and pyrimidine nucleotides) in addition to carnosine’s 
suppressive effects on glycolysis. However, whether carnosine is in-
hibitory to glutamine metabolism generally (i.e. other cell types) 
remains to be studied.

Carnosine is a dipeptide consisting of beta-alanine and histidine 
and is normally found mostly in skeletal muscle and in the olfactory 
bulb in the brain.22 Carnosine has been described as enigmatic,23 

and it is clearly pluripotent in its activities. Following its discovery 
over 100 years ago,24 many properties have been ascribed to car-
nosine; at a biochemical level these include hydrogen ion buffer, 
antioxidant, anti-glycating agent and aldehyde-scavenger. Physi-
ologically, effects on muscle strength are claimed,25 as are anti-in-
flammatory effects26 and anti-ageing activities.27 

The dipeptide has also been shown to inhibit growth of trans-
formed cells.28 Metabolic effects such as partial inhibition of glyc-
olysis,29 and enhancement of mitochondrial activity30 and proteol-
ysis31 have also been detected. Carnosine has also been shown to 
delay senescence in cultured human fibroblasts and to rejuvenate 
senescent cells.28 Beneficial effects towards senescence-accelerated 
mice32 have also been described, as well as suppression of diabe-
tes and protein glycation in mice.33 Carnosine also facilitates mac-
rophage-mediated clearance of senescent cells.34

 It is likely that carnosine’s effects are multifactorial, not only 
can the dipeptide affect metabolism, but it has recently been shown 
that prolonged fasting causes blood levels of carnosine (presuma-
bly intra-erythrocytic)  to increase35 along with a number of other 
anti-oxidants. A recent study has produced evidence suggesting 

that carnosine may act as an inhibitor of angiotensin-converting 
enzyme 2 (ACE2) which could then inhibit viral cellular entry via 
this protein.36 Thus carnosine could suppress not only viral infec-
tion but also Covid-19-induced metabolic changes.

Carnosine, Human Aging and Cognition

A recent study has revealed that Covid-19-related anosmia is 
accompanied by viral infection of the olfactory neuro-epithelium 
and the olfactory bulb, which may provide viral entry to the rest 
of the brain.37 and impact brain function generally.38 Carnosine is 
known to be present not only in human muscle but also in the olfac-
tory bulb. More recently the dipeptide has been detected in human 
erythrocytes, in amounts which decline with the age of the human 
source.39 Furthermore, blood levels of carnosine have been report-
ed to be very low in patients suffering from age-related macular 
degeneration,40 whilst very low serum levels of N-acetyl-carnosine 
(i.e. resistant to serum carnosinase) are strongly associated with 
frailty in humans.41  

There have been a number of studies on the possible effects 
of dietary carnosine supplementation in humans34,42 but the pres-
ence of serum carnosinase which ensures the rapid destruction of 
the dipeptide, limits the impact of dietary-supplied dipeptide. It is 
likely that the majority of carnosine in blood is due to its presence 
within erythrocytes; presumably the dipeptide is synthesized dur-
ing erythropoiesis. As erythrocytes are normally replaced after a 
lifetime of around 120 days in humans, it can be assumed that any 
study hoping to detect changes in blood (erythrocyte) carnosine 
levels should last for at least 3-4 months. One speculates whether 
erythrocytes deliver carnosine to the tissues in addition to oxygen. 
It is also possible that carnosine might somehow facilitate carbon 
dioxide uptake from the tissues and its release in the lungs as the 
dipeptide has been reported to affect the activity of carbonic anhy-
drase.43 It is never-the-less interesting that carnosine supplementa-
tion has revealed a beneficial effect towards schizophrenia44,45 and 
increased protein glycation in erythrocytes from schizophrenics 
has been reported.46,47

 Furthermore, childhood trauma has been reported to increase 
methylation of the carnosine synthase gene thereby decreasing car-
nosine synthesis which may contribute to the accelerated biologi-
cal aging upon becoming adults.48 There are no reports on whether 
changes in carnosine synthesis accompany psychological trauma in 
adults, but it is known that carnosine can exert beneficial effects 
following physical injury49,50 and there are also reports of positive 
effects of carnosine towards glycaemic control and obesity.51 Ani-
mal studies indicate that the dipeptide may suppress anxiety.52 The 
dipeptide’s ability to clear senescent cells33 may alleviate brain in-
flammation and age-related cognitive impairment.53 Furthermore, 
carnosine-mediated inhibition of advanced glycation end-product 
(AGE) formation in mice could also suppress age-related cognitive 
dysfunction.54 These observations suggest that carnosine’s ther-
apeutic potential should be explored in humans. While effects of 
Covid-19 on neurological activity have been discussed55-57 and del-
eterious changes in the CNS detected such as inflammation have 
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been described,58 it remains uncertain whether these are specific 
to Covid-19, or just a response to general infection. Nevertheless 
there is evidence showing that the presence of AGEs is a risk factor 
for Covid-19-associated mortality.59

Conclusion

It is possible that carnosine could exert protective activity to-
wards Covid-19 infection and subsequent pathology.60,61 Not only 
does the dipeptide suppress some of the metabolic changes conse-
quent upon viral infection, it may actually inhibit viral entry too.36 
Given that the virus enters the lungs, it is possible that raising the 
olfactory level of carnosine via nasal administration could be an ef-
fective strategy first to inhibit viral entry and then raise carnosine 
levels in the CNS generally, which may protect against glycation-in-
duced dysfunction. Nasal delivery of carnosine31,62 via a douche of 
carnosine in solution is an obvious possibility, however one might 
also consider a carnosine powder, akin to snuff as used years ago; 
indeed “snorting” carnosine would be medically preferable to the 
so-called “recreational” powders which apparently do reach the 
brain.63-65
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